Meeting & Exceeding Thermal Requirements of the Code

Presented by: Dr. John Straube, P.Eng

Principal, RDH Building Science Assoc Professor, Faculty of Engineering, University of Waterloo

RDH Building Science

> rdh.com | buildingsciencelabs.com rediscoverconcrete.ca

2017 THERMAL PERFORMANCE REQUIREMENTS SEMINAR SERIES MEETING AND EXCEEDING CURRENT AND FUTURE ENERGY EFFICIENCY REQUIREMENTS

PRESENTED BY RDH BUILDING SCIENCE LABORATORIES

PRESENTED BY

SPONSORED BY

CONSEIL CANADIEN DU BÉTON CONCRETE COUNCIL OF CANADA

\rightarrow Not an interpreting code seminar

\rightarrow Learning objectives:

- → Understanding the thermal performance implications of key early-stage design decisions related to basic enclosure design and window area.
- → Being able to identify multiple compliance paths for meeting the thermal performance requirements in Canadian building codes, for precast concrete, concrete masonry and cast-in-place concrete enclosure systems.
- → Being able to define thermal bridging, recognize it in architectural details, and define solutions.
- → Understanding different definitions of R-value and how they are used in design and code compliance for common precast concrete, concrete masonry and cast-in-place concrete systems.

Presentation Outline

- \rightarrow New Guide
- \rightarrow Responds to current needs & tougher codes
- → Focus is to assist early-stage design :simplified :approximate
- \rightarrow **Goal**: to guide design, not to demonstrate compliance

Table of Contents

- 1. Why **High-performance**
- 2. How codes work
- 3. Basic thermal calculations
- 4. Applications to precast / conc. masonry / cast-in-place

1 Introduction	
12 Background	
2 Energy Control Approach	
Codes and Stand	
2.1 Code Compliant	2
21.1 Climate Paths	2
2.1.2 Occurs	2
2.1.3 Assembly	5
2.2 Prescriptive A	3
2.3 Trade-off Area	5
2.4 Whole Build	6
2.5 Codes and T	7
3 Cov 2.6 Closure	7
S Calculating Encla	8
3.1 Backers	10
3.2 Definition	12
3.3 Calcular of R-value	12
331 - R-values for C	15
332 Interior Finishes and Common Company	17
333 Continuous Insular	17
3.4 Calcular Films and Sure	18
3.5 Window Thermal Pristo Coefficients	19
4 Calculating and Overall Provide Impacts	20
4.1 The Thermal Park	22
4.2 An in Performance of Precast France	23
Architectural Precast Concrete of	23
42.1 Clear-wall Pund	25
422 Whole-wall Provide	29
4.3 Accounting for Accounting 6	29
Double Wythe Insulation	30
Clear-wall River (Sandwich) Part	32
4.4 Top Whole-wall Parel	32
Add Precast	36
442 Clear-wall R-value	37
5 Summary Whole-wall Reval	39
6 References a	39
Appendix A: A Guidance Doc	42
Appendix R: Assumptions for forments	42
Appendix C: Surchitectural Pros	43
Appendix D: supplementary Takin Concrete Th	48
Appendix E: Ale	49
Alternate Total Provident Canadian En	51
recast System P	52
esults and the second s	54
	56 5
	59

1. Why High Performance

Why High-Performance

- \rightarrow Codes are changing
- → Striving to achieve real energy savings, carbon reductions, and peak shaving
- \rightarrow More resiliency in the face of disaster
- → Owners looking for more comfort, lower operating cost, better asset protection
- → Longer-term outlook for some... how to plan for churn, renewal, repair

Codes . . . They are a changing

→ Maximum code-allowed energy use has dropped significantly

Energy Use of All Buildings – By Age of Construction

Ref: Commercial and Institutional Building Energy Use, NRCAN 2005

Early-Stage Decisions

- \rightarrow Important decisions are often at start of design
- → Assuming .. Site is known, program fixed, and area estimated.

→ Window area is the largest practical factor

- → Less window area reduces energy use, improves thermal comfort, and costs less
- → Shape and orientation are less important, but can be useful to reduce cost and save energy
- → HVAC and details can be chosen later in process

Example Low-energy Office Building

→ Adding window area = more energy for heating &

Window-to-Wall Ratio (WWR) %

Shape & Size

Office: 12 ft. floor-to-floor Floor plate: 14,000 ft²

1.56 Enclosure per 1 Floor Area

1.58 Enclosure per 1 Floor Area

Aside: Embodied Energy

- → Operation / use comprises 80-90% of life-cycle energy of common buildings
- → Material choice is a small overall factor
- → Energy-efficiency & design-efficiency are 90-95%
- → Durable buildings are lower GHG

Aside: Embodied Energy

♠ > News

'Visionary' £7m eco-school to be demolished because of leaky roof

Dartington Primary School's eco buildings opened in 2010, were vacated in 2014, and now they are to be demolised CREDIT: APEX NEWS AND PICTURES

The school was meant to be one of the first zero carbon primary schools to be built in the country.

Durability matters

By Telegraph Reporters

3 AUGUST 2016 • 3:10PM

But Devon County Council now aims to replace the troubled school site with a new complex which

RDH

2. How Codes Work

→ "There is no code R-value your wall must meet"

- → Code official ("Authority Having Jurisdiction") ask designers to "demonstrate compliance" to code
- → Designers must know what the thermal performance of their walls are
 - \rightarrow to compare to tabulated values
 - \rightarrow to provide information to energy modelers
- → Level of detail in calculations depend on the code and the AHJ

Common Codes in Canada

- \rightarrow ASHRAE 90.1-20xx
- → NECB 20xx
- \rightarrow Provincial
 - \rightarrow Ontario SB-10
 - → Quebec "Regulation Respecting **Energy** Conservation in New Buildings Act.
- \rightarrow Enhanced
 - \rightarrow Net Zero Energy
 - \rightarrow Passive House, Energy Star
 - \rightarrow Living Building Challenge

ANSI/ASHRAE/IES Stan des ANSLASHRAE/ESNA Stand

ASHRAE STANDARD

Energy Standard for

Buildings Except

Buildings

SI Edition

Low-Rise Residential

Project specifics

 \rightarrow The following usually impact code requirements

\rightarrow Governing Code / Standard

→ ASHRAE 90.1-2010 (BC), NECB 2011/2015, SB-10 (Ontario), Quebec

→ Climate Zone

 \rightarrow Zone 4 through 8

\rightarrow Occupancy

- → Residential, non-res, semi-heated
- → Material Assembly (for ASHRAE-based codes)
 - → **mass**, steel-stud, wood framed, metal building

Code Compliance Paths

Mandatory minimum HVAC assumed

Code Compliance Paths

Prescriptive: Installed R-value

- \rightarrow Still an option in 90.1 / Ontario SB -10
- → Very Limiting e.g. RSI 2.3 + 1.8 ci... But what if we need a 6"/150 mm stud? Have to fit RSI 2.3 into stud

	Nonresidential		Residential		Semiheated	
Opaque Elements	Assembly	Insulation ^d	Assembly	Insulation ^d	Assembly	Insulation ^d
	Max. U	Min. RSI-Value	Max. U	Min. RSI-Value	Max. U	Min. RSI-Value
Roofs						
Insulation Entirely above Deck	U-0.16	6.2 ci	U-0.16	6.2 ci	U-0.36	2.6 ci
Metal Building	U-0.16	5.3 + 1.9 Ls	U-0.16	5.3 + 1.9 Ls	U-0.39	2.3 + 3.3
Attic and Other	U-0.10	10.6	U-0.10	10.6	U-0.15	6.7
Walls, Above Grade						
Mass	U-0.34	3.5 ci	U-0.34	3.5 ci	U-0.51	2.0 ci
Metal Building	U-0.30	2.3 + 2.3 ci	U-0.22	2.3 + 3.4 ci	U-0.45	2.3 + 1.1 ci
Steel Framed	U-0.31	2.3 + 1.8 ci	U-0.21	2.3 + 3.3 ci	U-0.48	2.3 + 0.7 ci
Wood Framed and Other	U-0.26	2.3 + 1.8 ci	U-0.26	2.3 + 1.8 ci	U-0.36	2.3 + 0.7 ci

→ Continuous Insulation (c.i.) is "insulation that is continuous across all structural members without thermal bridges other than fasteners and service openings. It is installed on the interior or exterior or is integral to any opaque surface of the building envelope."

Climate Zones

- → Generally the same in all codes (except Quebec)
- \rightarrow Cities listed in code 8 7B 7A 6 5 4 8 7B 7A 6

- → Typically, Residential requires higher thermal performance
- → Non-residential doesn't require as much
 - → Assumption is that non-res buildings generate a lot more internal heat
 - → Lights, process, etc.

Material / Assembly

- → Thermal mass benefits are considered by some standards
 - → Yes in ASHRAE 90.1
 - \rightarrow Not in NECB
- → Thermal bridging of framing implied in most tabulated installed R-values
 - → Must be accounted for in all codes (NECB, 90.1, SB-10)

Aside: Thermal Mass & Energy

- → Thermal mass can improve comfort, resiliency, and save energy
- → Mass in exposed ceilings is most valuable
- → Exterior walls also helpful- but keep it inside

■Heating Energy ■ Cooling Energy RDH Study of Vancouver MURB

Example Prescriptive Assembly R-Values

	Système international U-values (W/m²K)							
\rightarrow	Climate	HDD	ASHRAE 90.1-2010		NECB- 2011	Ontario SB-10		
	Zone	(18C)	Non-Residential	Residential	All	Non-Residential	Residential	
			<u>mass</u> <u>mass</u>		any	mass	mass	
	4	<3000	0.104	0.09	0.315			
	5	3000-4000	0.09	0.08	0.278	0.450	0.400	
	6	4000-5000	0.08	0.071	0.247	0.400	0.340	
	7/7A	5000-6000	0.071	0.071	0.21	0.340	0.340	
	7/7B	6000-7000	0.071	0.071	0.21	0.340	0.340	
	8	>7000	0.071	0.052	0.18	0.340	0.340	
	Inch-Pound R-values							
	ume	s mass			NECB-			
ide	assumallowed		ASHRAE 90.	1-2010	2011	Ontario S	B-10	
	where	(18C)	Non-Residential	Residential	All	Non-Residential	Residential	
Nalls			mass	mass	any	mass	<u>mass</u>	
	4	<3000	9.6	11.1	18.0			
	5	3000-4000	11.1	12.5	20.4	12.6	14.2	
	6	4000-5000	12.5	14.1	23.0	14.2	16.7	
	7/7A	5000-6000	14.1	14.1	27.0	16.7	16.7	
	7/7B	6000-7000	14.1	14.1	27.0	16.7	16.7	
	8	>7000	14.1	19.2	31.5	16.7	16.7	

27

- → Allows different types of walls, and different windows to have different R-value
- → Calculate overall heat transfer of code-minimum
 - → Usually max 40%WWR
 - → NECB has sliding scale... more restrictive

Simple Trade-off

→ Simple trade-off allows for the effects of window & wall areas and assembly choices to be accounted for

Maximum prescriptive Window Area

- → ASHRAE 90.1 / SB-10: 40% WWR
- \rightarrow NECB 2011/2015 Doors included, varies with HDD

Windows have a major impact!

Overall Wall R-value: for trade-off

	Système international U-values								
	Climate	HDD	ASHRAE 9	0.1-2010	NECB-2011		OBC SB-10		
\exists	Zone	(18°C)	Non-				Non-		
			Residential	Residential	Any occupancy		Residential	Residential	
			mass	mass	WWR (%)	all walls	mass	mass	
	4	<3000	1.49	1.44	40	1.15			
	5	3000-4000	1.33	1.29	40	1.05	1.07	1.03	
	6	4000-5000	1.29	1.26	37.5	0.98	1.03	1.00	
	7/7A	5000-6000	1.15	1.15	30	0.81	0.89	0.89	
	7/7B	6000-7000	1.15	1.15	22.5	0.66	0.89	0.89	
	8	>7000	1.15	1.09	20	0.46			
	Inch-Pound R-values								
	Climate HDD ASHRAE 90.1-2010			NECE	8-2011	OBC SB-10			
	Zone	(18°C)	Non-				Non-		
			Residential	Residential			Residential	Residential	
			mass	mass	WWR (%)	all walls	mass	mass	
	4	<3000	3.81	3.94	40	4.94			
	5	3000-4000	4.27	4.39	40	5.42	5.33	5.49	
	6	4000-5000	4.39	4.49	37.5	5.80	5.49	5.68	
	7/7A	5000-6000	4.94	4.94	30	7.04	6.41	6.41	
	7/7B	6000-7000	4.94	4.94	22.5	8.63	6.41	6.41	
	8	>7000	4.94	5.23	20	12.24			

32

Overall R-value vs some codes

- \rightarrow Allows for great flexibility
- → Model code minimum building, including all HVAC, lighting, DHW, etc. ("Reference Building")
- → Demonstrate Design Building is same or lower energy use
- \rightarrow Often require too much information at early stage.
- → Can't wait for modeling to make important design decisions
- \rightarrow Black box models often cloud understanding

Energy Models

Ref: Owens, Frankel, Turner. Energy Performance of LEED Buildings.

Low-energy Buildings are harder

Ref: Owens, Frankel, Turner. Energy Performance of LEED Buildings.
Occupancy matters

- → Energy use varies with occupancy
- → Modeling can't capture all
 - → Code prescribes many things
- \rightarrow Beware, NZE / PH

Simulation (horizontal) vs. actual (vertical) electric use for 17 identical houses in OK

3. Heat Flow Fundamentals

Calculating R-value of a *layer*

- \rightarrow RSI = R-value / 5.678
 - > E.g., R-12 = RSI 2.1
- \rightarrow U-value = 1/ R-value
 - \rightarrow E.g., R-10 = U-0.10
 - $\rightarrow R_{SI} 2.0 = U_{SI} 0.50$
 - \rightarrow RSI 3.0 = U=0.33
- \rightarrow R_{layer} = R/in * number of inches
- $\rightarrow R_{layer}$ = thermal conductivity/thickness

R-value of materials (from Guide)

Material	Conductivity (R/inch)	R-value at 2"	R-value at 2.5"	R-value at 3"	R-value at 3.5"	R-value at 4"
Open-cell foam (<u>ocSPF</u>)	3.8	7.6	9.5	11.4	13.3	15.2
Spray Cellulose	3.8	7.6	9.5	11.4	13.3	15.2
Mineral Wool semi-rigid	4.0	8.0	10.0	12.0	14.0	16.0
Expanded polystyrene Type 2		same as ser	ni-rigid miner	ral wool		
Extruded polystyrene	5.0	10.0	12.5	15.0	17.5	20.0
Polyisocyanurate	5.5	11.0	13.8	16.5	19.3	22.0
ccSPF	6.0	12.0	15.0	18.0	21.0	24.0
Reinforced Concrete	0.06	0.12	0.15	0.18	0.21	0.24
Clay Brick Veneer	0.13				0.45	
Material	Conductivity (W/mK)	RSI_for 50 mm	RSI for 63 mm	RSI_for 75 mm	RSI for 90 mm	RSI for 100 mm
Open-cell foam (ocSPF)	0.038	1.3	1.7	2.0	2.3	2.7
Spray Cellulose	0.038	1.3	1.7	2.0	2.3	2.7
Mineral Wool semi-rigid	0.036	1.4	1.8	2.1	2.5	2.8
Expanded polystyrene Type 2		same as ser	ni-rigid miner	ral wool		
Extruded polystyrene	0.029	1.8	2.2	2.6	3.1	3.5
Polyisocyanurate	0.026	1.9	2.4	2.9	3.4	3.9
ccSPF	0.024	2.1	2.6	3.2	3.7	4.2
Reinforced Concrete	2.4	0.02	0.03	0.03	0.04	0.04
Clay Brick Veneer	1.2				0.08	

40

Calculating R-value of a *layer*

- \rightarrow R_{layer} = R/in * number of inches
- $\rightarrow R_{layer}$ = thermal conductivity/thickness
- \rightarrow Example
 - → R = 2" x 5/inch = R-10 → RSI = .051m / 0.029 = RSI 1.76

Insulation Layer

Example: 2" of R5/inch 51 mm of k=0.029 W/mK

- → Fictitious layers represent resistance to convective and radiative heat flow at surfaces
- \rightarrow Not very significant
 - → Airfilms (R-0.84/ RSI0.15)
 - → Airgaps (R-1.0 / RSI 0.18)
 - > Low-emissivity coatings increase R-value

Condition	RSI-value	R-value
Interior Surfaces	0.120	0.68
Exterior Surfaces	0.029	0.16
20 mm (3/4") Air space	0.18	1.0

Which R-value?

- → *Rated R-value*, rating printed on the package / tech sheet
- → Installed R-value, rated R-value of the insulation products in their installed condition (e.g. compressed batt insulation or not)
- → Assembly R-value or Center-of-Cavity thermal resistance of all layers (e.g. add up layers) (e.g., NECB Section 3.2)
- → Clear-wall R-value (R_{cw}) thermal resistance of the layers (Assembly R-value) but also includes the two-dimensional effect of standard repetitive framing (e.g. steel studs and tracks)
- → Whole-wall R-value, (R_{ww}) which includes the Clear-wall R-value (R_{cw}) plus conductive penetrations (e.g. floors), additional framing at openings (e.g. windows and doors), other interfaces (e.g. foundation-to-above-grade wall, wall-to-roof, balconies, etc.)
- → Overall R-value (R_{overall}) entire enclosure type (such as wall, or roof) including Whole-Wall R-value (R_{ww}) plus windows, doors, and curtainwalls.

Reference: Christian, J.E., and Kosny, J., "Toward a National Opaque Wall Rating Label". *Proc.* 44 *Thermal Performance of the Exterior Envelopes VI*, ASHRAE, Clearwater Beach, 1995. \rightarrow Effective R-value is not universally defined

- → *Beware*: Definition is context-sensitive
 - → For example, "effective" may describe clear-wall R-value, or partial whole-wall, or include thermal mass effect, etc.

Installed R-value

→ Rated R-value vs Installed R-value

Nominal Lumber Size	Cavity Depth ⁱ			In	sulatio	n R-	14	X		UN	IFA	CED	1		
Lioist	4"	49						-				and the second			
lioist	-7/8"	44	38												
2 x 12	-1/4"	42	37												
l joist	9-1⁄2"	38	33												
2 x 10	9-1⁄4"	37	32	35	30										
2 × 8	7-1⁄4"		27	29	25	27	24								
2 x 6 ³	6"				22	24	21	21							
2 x 6	5-1⁄2"				21	22	20	19	21	20	18				
2 x 4 ³	4"						16	15	16	16	14				
2 x 4 ³	3-5/8"						15	4	15	15	13				
2 x 4	3-1⁄2"						14	4	15	14	13	15	13	11	
2 x 3	2-1⁄2"										10	Ш	10	8.9	8.0
2 x 2 ³	I-5/8"												7.1	6.5	6.1
2 x 2	-½"												6.6	6.1	5.7
2 x I	3⁄4"														3.3
Product I	R-Value	R-49	R-38	R-38C	R-30	R-30C	R-25	R-22	R-21	R-20	R-19	R-15	R-13	R-II	R-8
Label Thi	ckness	4"	12"	10-1/4"	9-1/2"	8-1/4"	8"	6-3/4"	5-1/2"	5-1⁄2"	6-¼"	3-1⁄2"	3-1/2"	3-1/2"	2-1⁄2"

Reference: Owens-Corning

METAL FRAMING BATTS

M470

R-19

METAL FRAMING BATTS

2.19

PROPINK FIBERGLAS' INSULATION

PROPINK HERGLAS INSULATION

6% 8

16

 \rightarrow Just add each of the layer *R*-values

Assembly R-value / U-value (in SI units)

- → Code U-values include R-value of insulation, drywall, *airfilms*, *air gaps*, concrete, masonry
- \rightarrow The insulation is the vast majority of the total
- \rightarrow Example: what is the RSI and U for system?
 - \rightarrow Layer 1: RSI 0.3
 - \rightarrow Layer 2: RSI 2.1
 - \rightarrow Layer 3: RSI 0.5
- \rightarrow Total RSI:
 - → 0.3 + 2.1 + 0.5 =RSI 2.9
 - \rightarrow R-value = 16.5 (=2.9 * 5.678)

$$\rightarrow$$
 U = 1/R_{SI} = 0.345 W/m² C

Example Assembly R-value

Layer	R-value
Exterior air film	0.16
5" (125 mm) concrete	0.30
2" (51 mm) XPS insulation	10.0
5/8" (15 mm) GWB	0.10
Interior air film	0.68
Total	11.2

Supporting tables from Guide

Material	Conductivity (R/inch)	R-value at 2"	R-value at 2.5"	R-value at 3"	R-value at 3.5"	R-value at 4"
Open-cell foam (ocSPF)	3.8	7.6	9.5	11.4	13.3	15.2
Spray Cellulose	3.8	7.6	9.5	11.4	13.3	15.2
Mineral Wool semi-rigid	4.0	8.0	10.0	12.0	14.0	16.0
Expanded polystyrene Type 2		same as ser	ni-rigid miner	al wool		
Extruded polystyrene	5.0	10.0	12.5	15.0	17.5	20.0
Polyisocyanurate	5.5	11.0	13.8	16.5	19.3	22.0
CCSPF	6.0	12.0	15.0	18.0	21.0	24.0
Reinforced Concrete	0.06	0.12	0.15	0.18	0.21	0.24

Condition	RSI-value	R-value		
Interior Surfaces	0.120	0.68		
Exterior Surfaces	0.029	0.16		
20 mm (3/4") Air space	0.18	1.0		

→ Few assemblies are simply layers of materials

- \rightarrow We have moved to
 - → 3-D frame work (steel/conc/wood frames, truss)
 - > hollow element (CMU, hollow core slab, window)
- \rightarrow R-value is no longer so simple

Thermal Bridging

- \rightarrow A local area of the enclosure that has higher heat loss
- → Steel studs, floor slabs most important

- → We can convert 3-D frames to layers
- \rightarrow Note the poor performance of steel stud insulation

Cavity Depth		Rated Cavity R-value	Layer R _{cw} -value	Layer RSI _{cw}		
In	mm		@ 16 inch centres	@ 405 mm centres		
2.5	64	Empty	2.15	0.37		
		Empty	2.19	0.39		
3.5	89	R-13	7.4	1.31		
		R-15	7.8	1.38		
		Empty	2.24	0.39		
6.0	450	R-19	8.5	1.50		
6.0	152	R-21	8.8	1.55		
		R-24 (4" ccSPF)	9	1.59		

Note: "ccSPF" is closed-cell Sprayed Polyurethane Foam insulation

Clear-wall R-value (R_{cw})

Layer	R-value	
Exterior air film	Incl in stud	
5" (125 mm) concrete	0.30	
2" (51 mm) XPS insulation	10.0	
3.5"(90mm) empty stud	2.19	Includes steel stud wal
5/8" (15 mm) GWB	Incl in stud	GWB and airfilms as a
Interior air film	Incl in stud	"layer", of about R2.2
Total	12.5	54

Supporting tables from Guide

Material	Conductivity (R/inch)	R-value at 2"	R-value at 2.5"	R-value at 3"	R-value at 3.5"	R-value at 4"
Open-cell foam (ocSPF)	3.8	7.6	9.5	11.4	13.3	15.2
Spray Cellulose	3.8	7.6	9.5	11.4	13.3	15.2
Mineral Wool semi-rigid	4.0	8.0	10.0	12.0	14.0	16.0
Expanded polystyrene Type 2		same as ser	ni-rigid miner	al wool		
Extruded polystyrene	5.0	10.0	12.5	15.0	17.5	20.0
Polyisocyanurate	5.5	11.0	13.8	16.5	19.3	22.0
ccSPF	6.0	12.0	15.0	18.0	21.0	24.0
Reinforced Concrete	0.06	0.12	0.15	0.18	0.21	0.24

Cavity Depth		Rated Cavity R-value	Lay	yer R _{cw} -val	ue	Layer RSI _{cw}	
In	mm		@ 16 inch centres		res	@ 405 mm centres	
2.5	64	Empty	2.15			0.37	
		Empty		2.19		0.39	
3.5	89	R-13		7.4		1.31	
		R-15		7.8		1.38	
		Empty		2.24		0.39	
6.0	152	R-19		8.5		1.50	
0.0	152	R-21		8.8		1.55	
		R-24 (4" ccSPF)		9		1.59	

Note: "ccSPF" is closed-cell Sprayed Polyurethane Foam insulation

Whole-wall R-value (R_{ww})

- → Will be shown later how to estimate thermal bridge at floor
- → Floor slabs/balcony can double heat flow

Overall R-value (R_{overall})

- \rightarrow *Example*:
 - \rightarrow Whole-wall R_{ww}-value = R-20 (U-0.050)
 - > R_{si}3.5, U_{si}0.29
 - \rightarrow Window R-value= 3 (U-0.33)
- $\rightarrow \text{Result } \mathbf{R}_{\text{overall}} \text{-} \mathbf{6.1} \text{ (RSI 1.07)}$
- → Calculation will be shown later

Includes framing, floor slabs *and* windows

Overall R-value vs some codes

Spandrel ??

Nominal R-14 (3 in stonewool) Actual R-4.0 Assembly: U-0.250 BTU/hr-ft²-°F

Curtainwall spandrel: thermal bridges

Reference: ASHRAE 1365-RP Thermal Performance of Building Envelope Construction Details for Mid- and High-Rise Buildings. Atlanta, GA: American Society of Heating, Refrigeration and Air-Conditioning Engineers Inc., 2012.

Window heat loss

- → There paths to consider for the vision assembly:
 - → Frame
 - → Edge of Glass
 - → Centre of Glass
- → Heat loss is more than centre of through the glazing units!
- → Consider Flanking (installation)

Thermal Bridging and Codes

- → Most require steel studs to be accounted for (often using tables and "ci")
- → NECB "the thermal bridging effect of closely spaced repetitive structural members, such as studs and joists, ... shall be accounted for"
 - → the thermal bridging effect of major structural members, such as columns and spandrel beams,... that partly penetrate that *building envelope* assembly need not be taken into account, provided they **do not increase the** *overall thermal transmittance* at the projected area of the member to more than twice
- → Ontario SB-10: intermediate structural connections of continuous steel shelf angles (or similar structural element) used to support the building façade not counted provided there is a thermal break between the remaining contact surface of the supporting element and the building structure ⁶²

Thermal Bridging and Standards

- → LEED "... energy modeling submittal pathways referenced by the LEED Canada rating systems require that thermal bridging in envelope assemblies (e.g. fenestration, opaque walls, roofs, etc.) be reasonably accounted for ..."
- → Passive House, Net Zero, etc. One needs to account for any thermal bridges that materially impact energy consumption.

Calculating Thermal Bridge Impacts

- \rightarrow Several methods available
- 1. Parallel Path Method
 - → Easiest, simple. Works well for concrete slabs

2. ISO Coefficient Method

- → Relatively easy. Requires coefficients for each scenario
- \rightarrow Best simple method for 3-D steel connections

3. Computer modeling

 \rightarrow Requires a trained specialist, but most flexible

\rightarrow A simpler method, common in the past

65

$$R_{avg} = \frac{1}{R_1} \cdot \mathscr{A}_1 + \frac{1}{R_2} \cdot \mathscr{A}_2$$

Parallel Path: Example

\rightarrow Used for wood framing in NBC 9.36

In wall systems with relatively large components (wood framing) that are moderately conductive (wood is at least R1/inch), the parallel **path method** has been found to be **quite accurate** (within a few % of measured data).

In this method, heat is assumed to flow from inside to outside in **parallel lines**: one through the wood framing, and another through the insulated portions.

Plan section through wood framed wall

First, conductance or overall **thermal transmittance through each of the paths** that constitute the total envelope section (eg., wood studs and batt insulation, or concrete column) is calculated.

Then the total heat flow is calculated, based on a **weighted average of the areas each path** comprises

68

R-value is 22.7 through the insulation and R-8.4 through the stud

For a wall with studs 16" on centre, real world data suggests that studs comprise between 20% and 25% of wall section.

$$U_{AVG} = U_{Stud} \cdot \frac{A_1}{A_1 + A_2} + U_{batt} \cdot \frac{A_2}{A_1 + A_2}$$

$$1 / R_{AVG} = 20\% / R_{Stud} + 80\% / R_{batt}$$

$$R_{AVG} = 16.9$$

2. ISO Coefficient Method

- \rightarrow Thermal bridges divided into two types:
 - → linear details that predominately exhibit two-dimensional heat flow, and
 - → point details that
 - predominately exhibit three-dimensional heat flow
- → Different symbols used to capture each effect
 - $\rightarrow \psi$ for transmittance of heat in 2-D
 - $\rightarrow \chi$ for transmittance of 3-D point details

Thermal Bridges – 2/3-D

$$Q = \left[U_o \cdot A + \sum \left(\Psi_i \cdot L_i \right) + \sum \left(\chi_j \cdot n_i \right) \right] \cdot \Delta T$$

- → U_o is the "clear field" assembly heat transmittance
- → A is the area of the assembly, including all details in the analysis area
- $\rightarrow \Psi_i$ (psi) linear heat transmittance value for detail "i"
- \rightarrow L_i is the total length of the linear detail "i" in the analysis area
- \rightarrow X_j (chi) point heat transmittance value of detail "j"
- → N is the number of point thermal bridges of type
 "j" in the analysis area
 Coefficients for some scenarios may be found in ASHRAE 1365

Report, BC Hydro Guide

Example: Balcony /exposed slab edge

From: BC Hydro Building Envelope Thermal Bridging Guide, 2014

- \rightarrow 8" concrete
- → 3" of continuous XPS insulation on interior
- \rightarrow 2.5" steel stud
- \rightarrow drywall

Clear-wall R-17.5 U_{cw}= 0.057 BTU/hr/**ft**²/ °F

psi = 0.539 BTU/hr/ft/ °F

Therefore, one linear foot of this detail is equal to 9.4 square feet of wall above it i.e., 0.539/.057 = 9.4

3. Computer Modeling

4" 102 mm z-girt @ \rightarrow 600 mm oc with R-16.8 semi-rigid

Metal siding \rightarrow

73

 $1/20*0.50 + \frac{1}{2}*0.50 = 0.05*.5+0.5*.5 = 0.025+0.25 = 0.275$, and $1/0.275=3.63_{75}$

Add R-2 to windows, significantly reduce heat loss/gain from building

Thermal Bridging - Floor Slabs

8" stab edge R-1.2

8'8" fullheight

Thermal Bridging - Floor Slabs

R-9.0

8'8" fullheight

4. Concrete Systems

→ Precast
→ Cast-in Place
→ Masonry

Concrete Systems

- → All Concrete systems have mass-benefit where allowed codes
- → Basic principles of calculating thermal performance are the same
- → Different systems have slightly different tips and tricks to calculate thermal bridges

RDH

Precast Concrete

- → Architectural Precast
- → Sandwich panels
- → Total Precast

Architectural Precast

- \rightarrow Single-wythe hung off building
- \rightarrow Exterior finish and air-water control
- \rightarrow Insulation added to the inside
- \rightarrow Thermal bridge at floor is possible
 - \rightarrow Easy to minimize with fire stopping insulation

Architectural Precast

Architectural Precast

→ Floor slab-edge insulation critical

Architectural Precast: Example

Layer	R-value
5" (125 mm) concrete	0.30
2" (51 mm) ccSPF insulation	12.0
3.5" empty stud/films/GWB	2.19
Total	14.5

Supporting tables from Guide

Material	Conductivity (R/inch)	R-value at 2"	R-value at 2.5"	R-value at 3"	R-value at 3.5"	R-value at 4"
Open-cell foam (ocSPF)	3.8	7.6	9.5	11.4	13.3	15.2
Spray Cellulose	3.8	7.6	9.5	11.4	13.3	15.2
Mineral Wool semi-rigid	4.0	8.0	10.0	12.0	14.0	16.0
Expanded polystyrene Type 2	e Type 2 same as semi-rigid mineral wool					
Extruded polystyrene	5.0	10.0	12.5	15.0	17.5	20.0
Polyisocyanurate	5.5	11.0	13.8	16.5	19.3	22.0
ccSPF	6.0	12.0	15.0	18.0	21.0	24.0
Reinforced Concrete	0.06	0.12	0.15	0.18	0.21	0.24

Cavity Depth		Rated Cavity R-value	Layer R _{cw} -value		alue	Layer RSI _{cw}
In	mm		@ 16 inch centres		ntres	@ 405 mm centres
2.5	64	Empty	2.15		2.15 0.37	
		Empty		2.19		0.39
3.5	89	R-13		7.4		1.31
		R-15		7.8		1.38
		Empty		2.24		0.39
6.0	152	R-19		8.5		1.50
6.0	152	R-21		8.8		1.55
		R-24 (4" ccSPF)		9		1.59

Note: "ccSPF" is closed-cell Sprayed Polyurethane Foam insulation

Architectural Precast

→ Floor slab-edge insulation critical

Floor-to-Floor

00			
	Ŧ	1	Floor slab
R _{conc}	R _{ci}	Rint	Interior panel height
00			
			Floor slab

Stonewool Firestopping Thickness (in.)	Effective Slab R-value
1	4.75
1.5	6.83
2	8.90
2.5	11.00
3	13.10
3.5	15.15
4	17.20
t>4"	4.0*t+1.2

Architectural Precast: Whole-wall Example

$$R_{ww} = 1 / \{ [(FF-T_{fl}) / FF] / R_{cw} + (T_{fl} / FF) / R_{fl} \}$$

where

1" (25 mm) fire stopping insulation \rightarrow R_{ww} is the whole-wall R-value Floor slab (incl. impact of slab) 10" (250 mm) \rightarrow FF is the floor-to-floor height stud framing (125 mm) Precast Concrete Floor-to-Floor (3.86 m) \rightarrow T_{fl} is the floor slab thickness 5/8" (15 mm) GWB R_{fl} is R-value of the floor-wall \rightarrow **ccSPF** steel assembly (from table) batt mm) \rightarrow Clear-wall R-19.7 (from before) e 2" (50 4 2 0" (mm) R_{ww} ່ເດ 5" (90 [(12.66-0.83) / 12.66] /19.7 + (0.83/ 12.66) / 4.75 с С $\rightarrow R_{ww}$ -16.1 \rightarrow R_{ww}-18.0 if gap changed to 2"

Overall R-value vs some codes

Architectural Precast: Tables

 \rightarrow Whole-wall

8" floor slab	s	Floor-to-floor height (ft)						
	Slab edge							
Rcw	(in)	9	10	12	14	16	20	24
2.1	1	2.2	2.2	2.2	2.2	2.2	2.2	2.1
	2	2.3	2.3	2.2	2.2	2.2	2.2	2.2
7.4	1	7.0	7.0	7.1	7.1	7.2	7.2	7.2
	2	7.5	7.5	7.5	7.5	7.5	7.5	7.5
8.5	1	7.8	7.9	8.0	8.0	8.1	8.2	8.2
	2	8.5	8.5	8.5	8.5	8.5	8.5	8.5
10	1	8.9	9.0	9.2	9.3	9.4	9.5	9.6
	2	9.9	9.9	9.9	9.9	9.9	9.9	9.9
12	1	10.3	10.4	10.6	10.8	11.0	11.1	11.3
	2	11.6	11.6	11.7	11.7	11.7	11.8	11.8
14	1	11.5	11.7	12.0	12.3	12.5	12.8	12.9
	2	13.2	13.2	13.4	13.4	13.5	13.6	13.7
16	1	12.7	12.9	13.4	13.7	13.9	14.3	14.6
	2	14.7	14.8	15.0	15.1	15.2	15.4	15.5
18	1	13.7	14.1	14.6	15.0	15.3	15.8	16.1
	2	16.2	16.3	16.6	16.8	16.9	17.1	17.3
20	1	14.7	15.1	15.8	16.3	16.7	17.2	17.6
	2	17.6	17.8	18.1	18.4	18.6	18.8	19.0
24	1	16.5	17.1	17.9	18.6	19.1	20.0	20.5
	2	20.2	20.5	21.0	21.4	21.7	22.1	22.4
28	1	18.1	18.8	19.9	20.7	21.4	22.5	23.3
	2	22.6	23.1	23.8	24.3	24.7	25.3	25.7
	3	24.9	25.1	25.6	25.9	26.1	26.5	26.7
32	1	19.5	20.3	21.6	22.7	23.6	24.9	25.8
	2	24.8	25.4	26.3	27.0	27.5	28.3	28.9
	3	27.6	28.0	28.6	29.0	29.4	29.8	30.2

Architectural Precast: Anchors

- \rightarrow Modest thermal bridge in most cases
- \rightarrow Not required to be accounted for by most codes
- \rightarrow Data and techniques in Guide
- → Small impact, about 5%-10%

Sandwich (Multi-wythe) Panels

Multi-wythe Sandwich panels

14'6" Floor-to-Floor (4.42 m)

- \rightarrow Continuous insulation
 - → Anchors and floors have no impact
- → No need to do complex calculations

Waterloo Region Courthouse NORR Architects

Multi-wythe Insulated Sandwich panels

Multi-wythe Insulated Sandwich panels

- → E.g. 4" thick XPS insulation between 3" outer wythe and 6" inner wythe
- \rightarrow Answer... about R21
- → note: 8" of concrete provides negligible R-value! (relative to insulation) (but mass effect)

	Insulation Type					
Insulation Thickness (in)	R4/in (MW/EPS)	R5/in (XPS)	R5.5/in (PIC)			
2	9.4	11.4	12.4			
2.5	11.4	13.9	15.1			
3	13.4	16.4	17.9			
3.5	15.4	18.9	20.6			
4	17.4	21.4	23.4			
4.5	19.4	23.9	26.1			
5	21.4	26.4	28.9			
6	25.4	31.4	34.4			
8	33.4	41.4	45.4			

Note: Insulation values include air films and 7" (178 mm) of concrete, but assume inter-wythe connections have negligible impact on heat flow

Insulation Thickness (mm)	k=0.036 W/mK (MW/EPS)	k=0.029 W/mK (XPS)	k=0.026 W/mK (PIC)
51	1.65	2.00	2.18
64	2.00	2.44	2.66
76	2.35	2.88	3.14
89	2.70	3.32	3.63
102	3.06	3.76	4.11
114	3.41	4.20	4.60
127	3.76	4.64	5.08
152	4.46	5.52	6.05
203	5.87	7.28	7.99

→ Uninsulated panel edges and embeds can be very significant... avoid if at all possible

- → Connectors reduce thermal performance
 - → Typical steel connections around 5-15% heat loss
- → Stainless steel connectors have ¼ the thermal conductivity of steel (so only add 1-5% loss)
- → Composite connectors have low conductivity ... but need to be larger in area /more in # for equal strength

Total Precast

Single-wythe Total Precast

- \rightarrow Load-bearing structure and exterior finish panels
- → Demising walls, stairwells, elevator core all precast
- → Thermal bridging at floor slab penetrations need to be accounted for
 - → Can be significant heat loss

Total Precast (MURB)

Total Precast: Example

\rightarrow Clear-wall R

- \rightarrow Easy to get high values
- \rightarrow Whole-wall R
 - → Floor slabs impact
- → Estimate thermal performance with parallel path method

9'8" Floor-to-Floor (2.95 m)

 \rightarrow Use R-1.2 for slab

Total Precast: Whole-wall Example

$$R_{ww} = 1 / \{ [(FF-T_{fl}) / FF] / R_{cw} + (T_{fl} / FF) / R_{fl} \}$$

where

- → R_{ww} is the whole-wall R-value (incl. impact of slab)
- \rightarrow FF is the floor-to-floor height
- \rightarrow T_{fl} is the floor slab thickness
- → R_{fl} is R-value of the floor-wall assembly (R-1.2 from Guide)
- \rightarrow R_{cw} is clear-wall R-20

 $\rightarrow R_{\text{WW}} - 9.6$

$$R_{ww} = \frac{1}{[(9.66-0.66) / 9.66] / 20 + (0.66/ 9.66) / 1.2]}$$

9'8" Floor-to-Floor (2.95 m)

105

Overall R-value vs some codes

→ Floor slab penetrations matter!

		floor-to-floor (ft)								
R _{ww}	9	9.66	11	12	16					
5	4.0	4.1	4.2	4.3	4.4					
7.5	5.4	5.5	5.7	5.8	6.2					
10	6.5	6.6	6.9	7.1	7.7					
12.5	7.4	7.6	8.0	8.2	9.0					
15	8.1	8.4	8.8	9.2	10.1					
17.5	8.7	9.0	9.6	10.0	11.2					
20	9.3	9.6	10.3	10.7	12.1					
25	10.1	10.6	11.4	11.9	13.7					
30	10.8	11.3	12.2	12.9	15.0					
35	11.3	11.9	12.9	13.6	16.1					
40	11.8	12.4	13.5	14.3	17.0					

Total Precast : Sandwich panel

- \rightarrow Total enclosure system
- \rightarrow Windows can be installed in plant

Total Precast Sandwich

- \rightarrow No thermal bridges
- → Balconies should be added to the exterior
- → R-value just like non-loadbearing precast sandwich
- → Estimate of performance: Insulation value

Cast-in-Place Systems

- → Conventional CIP
- → Insulated Concrete Forms (ICF)
- → Integrally-Insulated (Sandwich)

Conventional CIP

Concrete Structure

\rightarrow Any exterior enclosure system may be used

Thermal bridging: structural penetration

Cast-in-place

- \rightarrow Long-used structurally
- → Pierced shear wall can be exterior enclosure support
- → CIP floor slabs tie into walls, interior partitions, elevators
- → Interior or exterior insulation options available
- → Can expose concrete as a finish

CIP with Interior Insulation (Floor slab penetrating insulation)

- \rightarrow Identical to single-wythe total precast
- \rightarrow Thermal bypass of clear-wall insulation

CIP Interior Insulation Example

Layer	R-value
8" (200 mm) concrete	0.40
3" (76 mm) MW insulation	12.0
3.5" R-13 stud/films/GWB	7.4
Total	19.8

 \rightarrow

CIP Interior Insulation Example @ Floor Slab

- → Wall is 9'8" (2.95 m) tall with a 8" (0.2 m) floor penetration
- → From Guide, assume slab-edge acts as about R-1.2
- \rightarrow Clear-wall R-19.8
- → Using parallel path method, the overall R-value is
 - \rightarrow R-9.6

 R_{ww} = 1 / { [(FF-T_{fl}) / FF] / R_{cw} + (T_{fl} / FF) / R_{fl} } where

 R_{ww} is the whole-wall R-value of the wall panel FF is the floor-to-floor height T_{fl} is the floor slab thickness

R_{fl} is R-value of the concrete floor-to-wall assembly

	floor-to-floor (ft)									
Reve	9	10	11	12	16					
5	4.0	4.1	4.2	4.3	4.4					
7.5	5.4	5.6	5.7	5.8	6.2					
10	6.5	6.7	6.9	7.1	7.7					
12.5	7.4	7.7	8.0	8.2	9.0					
15	8.1	8.5	8.8	9.2	10.1					
17.5	8.7	9.2	9.6	10.0	11.2					
20	9.3	9.8	10.3	10.7	12.1					
25	10.1	10.8	11.4	11.9	13.7					
30	10.8	11.5	12.2	12.9	15.0					
35	11.3	12.2	12.9	13.6	16.1					
40	11.8	12.7	13.5	14.3	17.0					

Impact of Floor Slabs (SI)

	<u>floor</u> -to-floor (m)										
RSI _{cw}	2.74	3.05	3.35	3.66	4.88						
0.88	0.71	0.73	0.74	0.75	0.78						
1.32	0.95	0.98	1.00	1.02	1.08						
1.76	1.1	1.2	1.2	1.3	1.3						
2.20	1.3	1.4	1.4	1.4	1.6						
2.64	1.4	1.5	1.6	1.6	1.8						
3.08	1.5	1.6	1.7	1.8	2.0						
3.52	1.6	1.7	1.8	1.9	2.1						
4.40	1.8	1.9	2.0	2.1	2.4						
5.28	1.9	2.0	2.2	2.3	2.6						
6.16	2.0	2.1	2.3	2.4	2.8						
7.04	2.1	2.2	2.4	2.5	3.0						

CIP Exterior Insulation Example

Layer	R-value
3.5" Clay Veneer	0.45
1" Air gap	1.0
3" (76 mm) MW insulation	12.0
8" (200 mm) concrete	0.40
3.5" empty stud/films/GWB	2.19
Total	16.0

Supporting tables from Guide

Material	Conductivity (R/inch)	R-value at 2"	R-value at 2.5"	R-value at 3"	R-value at 3.5"	R-value at 4"
Open-cell foam (<u>ocSPF</u>)	3.8	7.6	9.5	11.4	13.3	15.2
Spray Cellulose	3.8	7.6	9.5	11.4	13.3	15.2
Mineral Wool semi-rigid	4.0	8.0	10.0	12.0	14.0	16.0
Expanded polystyrene Type 2		same as ser	ni-rigid miner	ral wool		
Extruded polystyrene	5.0	10.0	12.5	15.0	17.5	20.0
Polyisocyanurate	5.5	11.0	13.8	16.5	19.3	22.0
ccSPF	6.0	12.0	15.0	18.0	21.0	24.0
Reinforced Concrete	0.06	0.12	0.15	0.18	0.21	0.24
Clay Brick Veneer	0.13				0.45	

Cavity Depth		Rated Cavity R-value	L	ayer R _{cw} -va	alue	Layer RSI _{cw}		
In	mm		@	16 inch cei	ntres	@ 405 mm	centres	
2.5	64	Empty		2.15		0.3	7	
		Empty		2.19		0.3	9	
3.5	89	R-13	7.4			1.3	1	
		R-15		7.8		1.3	8	
		Empty		2.24		0.3	9	
6.0	450	R-19		8.5		1.5	0	
6.0	152	R-21		8.8		1.5	5	
		R-24 (4" ccSPF)	9			1.5	9	

RSI-value	R-value
0.120	0.68
0.029	0.16
0.18	1.0
	RSI-value 0.120 0.029 0.18

Note: "ccSPF" is closed-cell Sprayed Polyurethane Foam insulation

Exterior Insulated at Floor Slabs?

- → Exterior (continuous insulation) is not affected by floor slabs
- → Veneers (and air gap) do add some insulation value
- → Brick ties do
 reduce
 performance
 somewhat

Insulating Concrete Forms

Insulated Concrete Forms

\rightarrow High rise practical – manage window widths

ICF & cladding

Reference:Straube, J.F., *High Performance Enclosures: Design Guide for Institutional Commercial and Industrial Buildings in Cold Climates*. Building Science Press, Somerville, Massachusetts, 2012.

ICF Example

EPS Type 2	ŀ	I-P SI		
Thickness	R _{cw}	U _{cw}	R _{cw}	U _{cw}
100mm (4")	17.3	0.0579	3.0	0.329
125mm (5")	21.3	0.0470	3.7	0.267
150mm (6")	25.3	0.0396	4.5	0.225
175mm (7")	29.3	0.0342	5.2	0.194
200mm (8")	33.3	0.0300	5.9	0.171
225mm (9")	37.3	0.0268	6.6	0.152
250mm (10")	41.3	0.0242	7.3	0.138

ICF at Floor Slab penetrations?

- → Floor slab penetrates only half of the insulation
- → Impact on whole-wall Rvalue is modest

Reference:Straube, J.F., *High Performance Enclosures: Design Guide for Institutional Commercial and Industrial Buildings in Cold* 8 *Climates.* Building Science Press, Somerville, Massachusetts, 2012.

\rightarrow Floors have modest impact

8" floor slabs		Floor-to-floor height (<u>ft</u>)						
Rcw	<u>slab</u> edge insulation (in)	9	10	12	16	20	24	
20	2.5	18.9	19.0	19.1	19.3	19.5	19.6	
22	2.5	20.5	20.6	20.8	21.1	21.3	21.4	
24	2.5	22.1	22.2	22.5	22.9	23.1	23.2	
30	2.5	26.6	26.9	27.4	28.0	28.4	28.6	
35	2.5	30.1	30.6	31.2	32.1	32.6	33.0	
40	2.5	33.5	34.0	34.9	36.0	36.8	37.3	
20	4.0	19.8	19.8	19.8	19.9	19.9	19.9	
22	4.0	21.6	21.6	21.7	21.7	21.8	21.8	
24	4.0	23.3	23.4	23.5	23.6	23.7	23.7	
30	4.0	28.4	28.6	28.8	29.1	29.3	29.4	
35	4.0	32.5	32.7	33.1	33.6	33.8	34.0	
40	4.0	36.4	36.8	37.3	37.9	38.3	38.6	

Integrally-Insulated Sandwich Panels

Integrally-Insulated Sandwich Panels

RDH

Masonry

Masonry

- \rightarrow Non-combustible, impact resistant, flexible format
- → Load-bearing or infill CMU, masonry veneer

Masonry Unit Thermal Performance

R-values											
CMU Size [inch] nominal	4	6	8	10	12						
Normal Density (130 pcf) 50% solid											
Ungrouted	0.97	1.08	1.19	1.36	1.48						
Fully-grouted		0.60	0.81	1.01	1.26						
Filled with ccSPF		2.31	3.23	3.97	5.01						
Low Density (105 pcf) 50% solid	_										
Ungrouted	1.36	1.70	1.82	1.87	2.33						
Fully-grouted		0.78	1.05	1.28	1.5						
Filled with ccSPF		3.95	5.53	6.84	8.62						
	RS	I-values									
CMU Size [mm] nominal	100	150	200	250	300						
Normal Density (2100 kg/m3)											
Ungrouted	0.17	0.19	0.21	0.24	0.26						
Fully-grouted		0.11	0.14	0.18	0.22						
Filled with ccSPF		0.41	0.57	0.70	0.88						
Low Density (1700 kg/m3)											
Ungrouted	0.24	0.30	0.32	0.33	0.41						
Fully-grouted		0.14	0.18	0.23	0.26						
Filled with ccSPF		0.70	0.97	1.20	1.52						

Load-Bearing Masonry

Internally-Insulated Masonry

Thermal bridging occurs at structural penetrations

Internally-Insulated: Example

- → Calculate the clear-wall R-value and the whole-wall R-value.
 - → floor-to-floor height of 9'8" (2.95 m or 9.66 feet)
 - → 8" (200 mm or 0.66 foot) thick concrete slab.
 - \rightarrow an 8" (190 mm) CMU wall,
 - \rightarrow 3" (75 mm) of mineral wool,
 - → 3.5" (90 mm) steel stud with R-13 batt,
 - → 5/8" (15 mm) gypsum

Internally-Insulated Masonry Example

\rightarrow Using Tables,

- → interior layers (batt, GWB, etc.)
 have an R-value of R-7.4
- → 3" (76 mm) of mineral wool provide 3 x R-4/inch (from Table 7) = R-12
- → 8" (190 mm) CMU provides R-1.19
- → a total clear-wall R-value of $7.4 + 12 + 1.2 = R_{cw} 20.6$ (RSI-3.60).

→ Floor slab impact on whole-wall R-value (R_{ww}) estimated using the recommended R-1.2 (RSI 0.21) for the slab, as:

- $\rightarrow R_{ww} = 1 / \{ [(FF-T_{fl}) / FF] / R_{cw} + (T_{fl} / FF) / R_{fl} \}$
- $\Rightarrow R_{ww} = 1/\{ [(9.66-0.66)/9.66]/20.6 + (0.66/9.66)/1.2 \} = R-9.7$
- \rightarrow Whole wall R drops from R-20.6 to R-9.7

Supporting tables

	Mate	erial	Conductivity (R/inch)	R-val 2	ue at "	R-value at 2.5"	R-value a 3"	t R-value 3.5"	at R	-value at 4"		
Open	-cell foam	n (ocSPF)	3.8	7.	.6	9.5	11.4	13.3		15.2		
Spray	/ Cellulose	2	3.8	7	.6	9.5	11.4	13.3		15.2		
Mine	ral Wool s	semi-rigid	4.0	8	.0	10.0	12.0	14.0		16.0		
Expa	nded poly	styrene Type 2		same	as sen	ni-rigid miner	ral wool					
Extru	ded polys	tyrene	5.0	10	0.0	12.5	15.0	17.5		20.0		
Polyi	socyanura	ite	5.5	11	0	13.8	16.5	19.3		22.0		
<u>ccSP</u>	- -		6.0	12	2.0	15.0	18.0	21.0		24.0		
	R-values											
					CM	IU Size [inch]	nominal	4	6	8	10	12
					Norma	l Density (130 g	ocf)					
Covito	(Donth	Pated Cavity P val	io Lavor P	value	– Ungroเ	uted		0.97	1.08	1.19	1.36	1.48
Cavity	Depth	Rated Cavity R-Val	ale Layer Kow	-value	Fully-g	routed			0.60	0.81	1.01	1.26
In	mm	1		centres	Filled v	vith ccSPF			2.31	3.23	3.97	5.01
2.5	64	Empty	2.15	5	Low De	ensity (105 pcf)						
		Empty	2.19)	Ungrou	uted		1.36	1.70	1.82	1.87	2.33
3.5	89	R-13	7.4		Fully-g	routed			0.78	1.05	1.28	1.5
		R-15	7.8		Filled v	vith ccSPF			3.95	5.53	6.84	8.62
		Empty	2.24	1								
6.0	152	R-19	8.5									
0.0	152	R-21	8.8									
		R-24 (4" ccSPF)	9									139

Note: "ccSPF" is closed-cell Sprayed Polyurethane Foam insulation

Interior Insulated Masonry: Tables (I-P)

	floor-to-floor (ft)										
Rcw	9		10	11	12	16					
5	4.0	Ľ	4.1	4.2	4.3	4.4					
7.5	5.4	9'8	5.6	5.7	5.8	6.2					
10	6.5	for	6.7	6.9	7.1	7.7					
12.5	7.4	late	7.7	8.0	8.2	9.0					
15	8.1	rpo	8.5	8.8	9.2	10.1					
17.5	8.7	Inte	9.2	9.6	10.0	11.2					
20	9.3		9.8	10.3	10.7	12.1					
25	10.1		10.8	11.4	11.9	13.7					
30	10.8		11.5	12.2	12.9	15.0					
35	11.3		12.2	12.9	13.6	16.1					
40	11.8		12.7	13.5	14.3	17.0					

Interior Insulated Masonry: Tables (SI)

	<u>floor</u> -to-floor (m)				
RSIcw	2.74	3.05	3.35	3.66	4.88
0.88	0.71	0.73	0.74	0.75	0.78
1.32	0.95	0.98	1.00	1.02	1.08
1.76	1.1	1.2	1.2	1.3	1.3
2.20	1.3	1.4	1.4	1.4	1.6
2.64	1.4	1.5	1.6	1.6	1.8
3.08	1.5	1.6	1.7	1.8	2.0
3.52	1.6	1.7	1.8	1.9	2.1
4.40	1.8	1.9	2.0	2.1	2.4
5.28	1.9	2.0	2.2	2.3	2.6
6.16	2.0	2.1	2.3	2.4	2.8
7.04	2.1	2.2	2.4	2.5	3.0

Externally-Insulated Masonry

- → Easy to calculate.. can ignore ties and shelf angles by code, but may need to account for other reasons
- → In general, adding insulation "plus a couple R" will be good enough estimate

Steel-Stud Masonry Veneer

Lots of high performance options

R-value, e.g. 2.5" PIC = R16 3" XPS = R18 3" MFI = R15 2" MFI = R11 4" ccSPF = R26

Steel-stud / masonry veneer

→ Calculated using same approach

Reference:Straube, J.F., *High Performance Enclosures: Design Guide for Institutional Commercial and Industrial Buildings in Cold Climates*. Building Science Press, Somerville, Massachusetts, 2012.
R- '	value,	e.g.	
3"	PIC	= R20	0
4"	XPS	= R2	3
4"	MFI	= R20	C
3"	MFI	= R1	5
3"	EPS	= R1!	5
4"	ccSPF	= R2	7

Brick veneer/stone veneer	→□	
Drained cavity —		
Exterior rigid insulation — extruded — polystyrene, expanded polystyrene, isocyanurate, rock wool, fiberglass		
Membrane or trowel-on or spray ——— applied vapor barrier (Class I vapor retarder), air barrier and drainage plane (impermeable)		
Non paper-faced exterior gypsum —— sheathing, plywood or oriented strand board (OSB)		
Uninsulated steel stud cavity ———		
Gypsum wall board (GWB) ————		•
Latex paint or vapor semi- permeable textured wall fiinish		

Steel-stud / masonry veneer

 \rightarrow

8" (200 mm) slabs			fle	oor-to-floor (j	ft)	
Rbatt	R _{ci}	9	10	12	16	24
0	7.5	11.5	11.5	11.5	11.5	11.6
0	10	14.0	14.0	14.0	14.0	14.1
0	15	19.0	19.0	19.0	19.0	19.1
0	20	23.3	23.3	23.3	23.3	23.3
0	25	28.3	28.3	28.3	28.3	28.3
13	5	13.4	13.5	13.6	13.8	14.0
13	7.5	16.0	16.1	16.2	16.4	16.5
13	10	18.6	18.7	18.8	18.9	19.0
13	15	23.6	23.7	23.8	23.9	24.1
15	10	18.9	19.0	19.1	19.3	19.4
15	15	24.0	24.1	24.2	24.3	24.4
15	20	29.0	29.1	29.2	29.3	29.5
19	7.5	16.9	17.0	17.2	17.4	17.5
19	10	19.5	19.6	19.7	19.9	20.1
19	15	24.6	24.7	24.8	25.0	25.1
19	20	29.7	29.7	29.8	30.0	30.1
24	10	19.9	20.0	20.2	20.4	20.5
24	15	25.0	25.1	25.3	25.4	25.6

Note: <u>Rbatt</u> and <u>Rci</u> are the nominal ratings for the insulation installed between metal framing and outside respectively.

Thermal Bridging Solutions

Supporting Masonry Veneer, Balcony Penetrations, Cladding Attachment, etc.

Shelf Angles

\rightarrow Often one per floor

Heavy Cladding Attachment through Exterior Insulation

Stupidly large shelf angle Structural engineers need to be part of the conversation

HEAD CHAN

Shelf Angles: Use Stand-offs or better

	Knife Plate	HSS Structural	Overlapping	Poured Concrete
		Section	Angles	Backup
	shelf angle: 4"x4"x1/4" outside of insulation. 4"x4"x3/4" stand- off knife plates welded to embed plates at 48" o.c.	shelf angle 4"x4"x1/4" outside insulation. 4"x4"x1/4" HSS tube welded to embed plates at 48" o.c.	shelf angle 4"x4"x1/4" outside insulation. 2-6"x4"x5/16" angles bolted to slab edge at 48" o.c.	
Nominal Insulation R-Value/U-Value	R-16.8 (RSI 2.95) U-0.060 (USI 0.339)	R-16.8 (RSI 2.95) U-0.060 (USI 0.339)	R-16.8 (RSI 2.95) U-0.060 (USI 0.339)	R-16.8 (RSI 2.95) U-0.060 (USI 0.339)
Effective Assembly R-Value/U-Value	R-14.8 (RSI 2.6) U-0.068 (USI 0.384)	R-14.8 (RSI 2.6) U-0.068 (USI 0.385)	R-15.0 (RSI 2.64) U-0.067 (USI 0.379)	R-10.5 (RSI 1.84) U-0.096 (USI 0.543)
Effective Reduction	16.4%	16.5%	15.3%	37.5%
Linear Transmission	$\psi = 0.096 \text{ IP} (0.166 \text{ SI})$	$\psi = 0.097 \text{ IP} (0.168 \text{ SI})$	$\psi = 0.089 \text{ IP} (0.153 \text{ SI})$	$\psi = 0.339 \text{ IP} (0.586 \text{ SI})$

Wilson, M., Finch, G., Higgins, J., "Masonry Veneer Support Details: Thermal Bridging", *Proc. of 12th* 151 *Canadian Masonry Symposium*, Vancouver, British Columbia, June 2-5, 2013.

Stand-off Shelf Angle

(courtesy of Fero Corp)

Masonry – With Stand-off Shelf Angles

<u>Without</u> Stand-off Plates: Overall Effective - Including Sla Backup: 3 5/8" Steel Studs , Em	ab Edges <i>pty</i>		
+2" Mineral Wool Exterior (R- 8.4)	R-8.6		
+3" Mineral Wool Exterior (R- 12.6)	R-10.1		
+4" Mineral Wool Exterior (R- 16.8)	R-11.5		
<u>WITH</u> Stand-off Plates: Overall Effective - Including Slab Edges Backup: 3 5/8" Steel Studs , Empty			
+2" Mineral Wool Exterior (R- 8.4)	R-11.3		
+3" Mineral Wool Exterior (R- 12.6)	R-14.5		
+4" Mineral Wool Exterior (R- 16.8)	R-17.7		

Balcony Design Solutions

Thermal Bridging Solutions

- \rightarrow Products are being brought to market
- \rightarrow Thermally-broken balconies

Installation is simple

Brick Ties / Cladding Attachment

Finch, G, Wilson, M., Higgins, J., "Thermal Bridging of Masonry Veneer Claddings & Energy Code Compliance", *Proc. of 12th Canadian Masonry Symposium*, Vancouver, British Columbia, June 2-5, 2013.

162

Cladding Attachment Options

Vertical Z-girts

Horizontal Z-girts

Aluminum Clip & Rail

Thermally Improved Clip & Rail

Crossing Z-girts

Galvanized/Stainless Clip & Rail

Long Screws through Insulation

Cladding Attachment Thermal Bridging

Over Empty 3 5/8" Steel Stud Back-up Wall

From: RDH Research

- Continuous Horizontal Z-Girt 24" OC
- Continuous Vertical Z-Girt 16" OC

Aluminum T-Clip - 16" x 24"

 \rightarrow Simple calculations suffice for most design

- → Include thermal bridging of framing \rightarrow Use tabular data
- \rightarrow Exterior, continuous insulation usually best option \rightarrow Consider thinner studs, thick continuous insul.
- → Simple trade-off analysis can make a big difference, fewer and/or better windows have a big impact

Roofs and Basements

Grade-transition

- \rightarrow Code exempts specific scenarios
- \rightarrow Others need to be calculated

Grade-transition

ICF Basement

CIP Basement with Interior Insulation

CIP Basement with Exterior Insulation

Stand-off Shelf Angle at Grade

 \rightarrow Low-slope most common for this segment

→ Account for Screws?→ Not code-required

→ Account for HVAC Curbs, HVAC Screen posts, etc.?

Roofs thermal bridges:

Parapets

- \rightarrow Wrap-around insulation
- \rightarrow Easy to add a little on top

Parapets

Parapets

Enclosures, Building Science Press. 2012.

178

Parapet with Wrap-Around Insulation

Questions?

AND THANKS FOR LISTENING

RDH Building Science → rdh.com | buildingsciencelabs.com